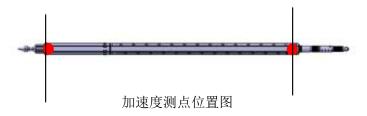
中国示范快堆堆内组件模拟件跌落冲击试验分析计算

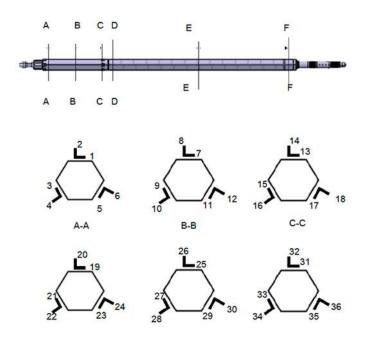
一、试验目的

示范快堆工程是国家重大核能科技专项,对于实现核燃料闭式循环、促进我国核能可持续发展,推动地方经济建设具有重要意义。燃料组件是反应堆核心部件之一,在转运插拔过程中一旦发生跌落事故造成结构破坏,可能会导致燃料组件内放射性气体外泄,威胁环境和人员安全。本试验的目的研究组件模拟件从换料过程中突然跌落,与刚性地面碰撞对组件模拟件的结构完整性的影响,为构件结构安全性设计提供试验数据支撑。

二、试验台架



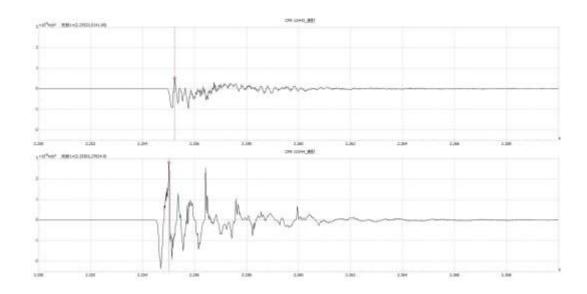
三、测试仪器


测试仪器名称	型号	技术参数	数量
动态信号采集分	INV3018H	24 位 CPCI 采集卡,8 通道	44 通道
析系统		/CPCI 总线/102.4kH	
加速度传感器	M 350C03/23	量程 10000g	2 个
三坐标测量仪	FUTURE 系列 301515	行程: 3000*1500*1500	1 套
		mm;误差:5e-6mm	
应变仪	BE120-3BA(11)-P150	敏感栅尺寸 3.1*1.8mm;	36
	THY120-3CA(15%)	基底尺寸: 11.1*11.1mm	
激光测距仪	GLM80	测量范围 0.05-80 米 测	1个
		量精度±1.5mm	

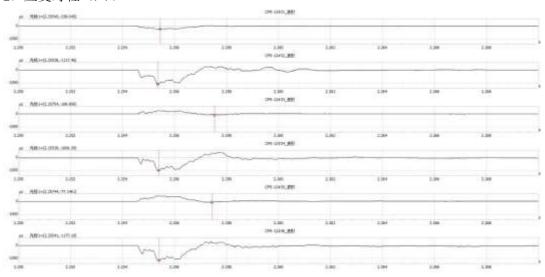
四、测试内容

1. 加速度测量

2. 应变测量

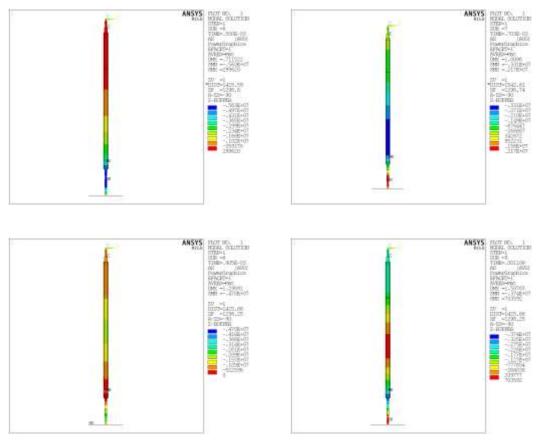

应变片贴片位置图

五、试验工况


模拟组件从 100mm, 200mm, 300mm, 400mm, 500mm 的高度分别竖直跌落到刚性平面上的情况。

六、试验结果

1. 加速度时程


2. 应变时程 (F-F)

七、数值仿真

有限元计算模型

加速度瞬时分布(mm/s²)

八、思考题

- 1. 根据加速度实测时程曲线计算应力波波速,并与理论值进行比较;
- 2. 根据应变实测时程曲线分析结构出现塑性变形的工况。